

Planning and Quality Assurance Affairs

Form ((A)
--------	-----

Course Specifications

Conoral	Information
General	ппогшанов

Course name	Molecular Biology (2)
Course number	BIOL4379
Faculty	
Department	
Course type	Major Needs
Course level	4
Credit hours (theoretical)	3
Credit hours (practical)	0
Course Prerequisites	

Course Objectives

 The course covers the following subjects: Introduction to Recombinant DNA basics, Gel electrophoresis, Nucleic acid hybridization, PCR, DNA clones, DNA vectors, introduction to proteomics, IEF and 2-D Gel electrophoresis, DNA arrays and other application in molecular biology

Course Contents

- 1 Recombinant DNA Basics
- 2 The Uses of Recombinant DNA
- 3 Gel Electrophoresis
- 4 _ Nucleic Acid Hybridization Assays
- 5 DNA Structure and Complementary Base Pairing
- 6 DNA Renaturation, Annealing, and Hybridization
- 7 Hybridization Assays
- 8 The Polymerase Chain Reaction
- 9 _ Templates, Primers, and DNA Polymerase
- 10 The PCR Amplification Process
- 11 Applications of PCR
- 12 Constructing Recombinant DNA Molecules
- 13 DNA Clones
- 14 _ Sources of DNA for Cloning
- 15 Cutting and Joining DNA
- 16 DNA Vectors
- 17 Introduction to Proteomics
- 18 Technologies for Proteomics
- 19 Protein Identification
- 20 1D-SDS-PAGE
- 21 Isoelectric Focusing (IEF)
- 22 2-D Gel Electrophoresis (2-DE)
- 23 Steps of 2-DE
- 24 _ Resolution of 2-DE Gels
- 25 Reproducibility of Protein Profiles Obtained by 2-DE
- 26 Stains and Dyes of 2-DE
- 27 Image Analysis in 2-DE
- 28 DNA and Protein Microarray Technologies
- 29 _ DNA Arrays
- 30 Design of a Microarray System
- 31 Attachment of a Single DNA Molecule to a Silicon Surface
- 32 How to Choose an Array

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
First hour exam	60minutes	20
Second hour exam	60minutes	20
Attendence		10
Final exam	120minutes	50

Books and References

Recommended books 1- Principle and techniques of Biochemistry and Molecular Biology.6th ed. 2005