

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

Jeneral Information			
Course name	Calculus		
Course number	MATH1301		
Faculty			
Department			
Course type	Major Needs		
Course level	1		
Credit hours (theoretical)	3		
Credit hours (practical)	0		
Course Prerequisites			

Course Objectives

- 1 Understand concepts and develop skills to calculate, analyze and interpret results
- 2 Learn to think about problems mathematically and to solve problems independently
- 3 Understand the major problems of differential and integral calculus
- 4 State and explain basic calculus definitions and theorems
- 5 Help student to be a problem solver
- 6 Understand the important applications of the concepts

Intended Learning Outcomes

Knowledge and Understanding	*	 analyze functions for continuity and differentiability 		
	*	understand the meaning of the derivative in terms of the rate of change		
	*	demonstrate knowledge of curve sketching		
	*	understand the relationship between derivatives and integrals		
	*	understand the relationship between the process and its inverse		
	*	understand the meaning of the derivative by the rate of change		
	*	be able to solve algebraic equations and inequalities involving the square root and modulus function		
Intellectual Skills	*	recognize other important functions as logarithmic and exponential functions		
	*	think about problems mathematically and to solve problems independently		
	*	introduce mind to the scientific methods of analysis		
Professional Skills	*	analyze and evaluate limits graphically, numerically and analytically		
	*	use the differentiation techniques to find the derivative of the function, tangent lines, normal lines and rate of change		
	*	evaluate definite integrals using Fundamental Theorem of Calculus		
	*	understand the meaning and the important applications of the concepts		
	*	help student to be a problem solver		
General Skill	*	hone the ability to do reality checks on calculations		
	*	learn to work together productively and to work cooperatively		
	*	be provided with insight into the power and generality of mathematics		

Course Contents

1	_	Precalculus	review: algebra-	functions- tric	onometry
-			9		, ,

- 2 Limits of functions: introduction to limits- techniques for finding limits- limits involving infinity- continuous functions
- 3 The derivative: tangent lines and rate of change- definition of derivative- techniques of differentiationderivatives of the trigonometric functions- increments and differentials- the chain rule- implicit differentiation
- 4 Application of the derivative: extrema of functions- the mean value theorem- the first derivative test- concavity and the second derivative test- summery of graphical methods
- 5 Integrals: antiderivatives and indefinite integrals- change of variables in indefinite integrals- the definite integral- properties of the definite integral- the fundamental theorem of calculus-
- 6 Logarithmic and exponential functions: inverse functions- the natural logarithmic function- the natural exponential function- integration- general logarithmic and exponential functions

Teaching and Learning Methods

- 1 lectures
- 2 discussion

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
First mid-term exam	after 6 weeks of study	25%
Second mid-term exam	after 10 weeks of study	25%
Final Exam	at the end of the	50%
	semester	

Books and References			
Essential books	Calculus, fifth edition; Earl W. Swokowski; Pws-Kent Puplisher Company, 1991		
Recommended books	Calculus with analytic geometry; Robert Eliis & Dinny Guihk, 1994		
	Calculus; Thomas Finny; Addison-Wesely Puplishing Company, Inc 1996		
	all calculus books		

Knowledge and Skills Matrix

Main Course Contents	Study Week	Knowledge and Understanding	Intellectual Skills	Professional Skills	General Skill
.Algebra - functions - trigonometry	1-3	* recognize the absolute values * distinguish between identities and equations know addition and double-angle formulas for trigonometric ftrigonometricfun ctions	* help to think mathematically * help to be a problem solver	* solve inequalities and equations * solve trigonometric equations	learn to work together productively and coperatively
introduction to limits-techniques for finding limits - limits involving infinity - continuous functions	4-5	* understand continuous functions	introduce mind to the scientific methods of analysis	* calculate limits by substitution and by eliminating zere denominators and to calculate limits as infinity of rational functions use limits to solve problems	* be a problem solver * participate in team work activities outside the class
tangent lines and rate of change - definition of derivative - techniques of differentiation- derivatives of trigonometric functions- increments and diffferentials- chain rule- implicit differentiation	6-8	* understand the meaning of the derivative * understand the concept of linear approximation * understand the important applications of the concepts	*help students to be a problem solver * introduce mind to the scientific method of analysis	Use differentiation techniques to find derivative of the function tangent lines, normal lines and rate of change.	work together productively and to learn to be cooperative
extrema of functions- the mean value theorem- the first derivative test- concavity and the second derivative test- summery of graphical methods-	9-11	* understand the mean value theorem	introduce mind to the scientific methods of analysis	find precisely the extreme points which play a significant role in applications * to sketch the graph of a function accurately	participate in team work activities outside tha class and learn to be cooperative

Antiderivatives and indefinite	12-14	* understand the	* introduce mind	* utilize these	* work
integrals-change of variables		concept of	to the scientific	topics in physical	together
in indefinite integrals-		indefnite integral	methods of	applications	productively
summation notation and area-		as antiderivative	analysis	* help to be a	and learn
the definite integral and its		* be able to		problem solver	cooperativel
properties- the fundamental		evaluate			у
theorem of calculs		integrals by			*
		substitution with			demonstrat
		and without			e and
		suitable hints			understand
		*know the			the
		fundamental			important
		theorem of			applications
		calculus			of the
					concepts
logarithmic and exponential	14-15	* study the	* introduce mind	* be able to state	*participate
functions- the natural		inverse of the	to the scientific	and explain basic	in a team
logarithmic function- the		functions and	methods of	definitions and	work
natural exponential functions-		recognize other	analysis	theorems of	activities
integration- general		important	* motivate student	calculus	outside the
logarithmic and exponential		functions	to be a problem	* apply the	class and
functions		* integrate	solver	procedures of	learn to be
		functions with		logarithmic	cooperative
		certain kinds		differentiation	* appreciate
				*communicate	the
				mathematics	importance
					of
					mathematic
					s