

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information

Course name
Course number
MATH1321

Faculty
Department
Course type
College Needs
Course level
1
Credit hours (theoretical)
Credit hours (practical)

Course Prerequisites

Course Objectives

- study and recognize other important classes of functions as logarithmic functions, exponential functions and hyperbolic functions
- 2 learn basic techniques of integration for functions with one variable
- 3 be prepared to take more advanced courses in mathematics
- 4 understand infinite series and their convergence and divergence criteria and know how they can be used in approximation techniques
- enable student to apply his knowledge to solve practical problems they encounter in phisical sciences and engineering

Intended Learning Outcomes

Knowledge and Understanding	 study and recognize other important classes of functions as logarithmic functions, exponential functions and hyperbolic functions 		
	 use integration by parts, trigonometric substitution, partial fraction to evaluate definite and indefinite integrals 		
	 define an improper integral and evaluate some classes of improper integrals by the concepts of limits, convergence and divergence 		
	* determine convergence or divergence of sequences and series		
	* use Taylor and Maclaurin series to represent functions		
	* use Taylor and Maclaurin series to integrate functions		
Intellectual Skills	 develop and strengthen problem solving 		
	* understand concepts rather than mimic techniques		
	 learn to think about problems mathematically and to solve problems independently 		
Professional Skills	 be able to state and explain basic calculus definitions and theorems 		
	 understand the relationship between the process and its corresponding inverse 		
	 understand the meaning and important applications of the concepts 		
	 have a clear understanding of the ideas of calculus as a foundation for subsequent courses in mathematics 		
General Skill	 hone the ability to do reality checks on calculations 		
	 become effective communicator and team player 		
	* learn to work together productively and learn to be cooperative		
	* be able to communicate mathematics		

Course Contents

- 1 Logarithmic and Exponential Functions : invers functions- the natural logarithmic function the natural exponential function integration general logarithmic and exponential functions
- 2 Inverse Trigonometric and Hyperbolic Functions: inverse trigonometric functions- derivatives and integrals hyperbolic functions inverse hyperbolic functions
- 3 Techniques of integration: integration by parts trigonometric integrals trigonometric substitutions integrals of rational functions- integrals involving quadratic expressions miscellaneous substitution
- 4 ndeterminant forms and Improper Integrals: indeterminant forms and I Hopitals rule integrals with infinite limits of integration integrals with discontinous integrands
- Infinite Series: sequences convergent or divergent series positive term series tests- the ratio and root test alternating series and absolute convergence- power series- power series representation of functions -Maclaurin and Taylor series- the binomial series

Teaching and Learning Methods

- 1 lectures
- 2 discussion

Students Assessment

Assessment Method	<u>TIME</u>	<u>MARKS</u>
first midterm exam	after 6 weeks of study	25%
second midterm exam	after 10 weeks of study	25%
final exam	at the end of the	50%

semester

Books and References

Essential books
Calculus, fifth edition; Earl W. Swokowski; Pws-Kent Puplisher Company, 1991

Calculus with analytic geometry- Robert Ellis & Denny Guhick,1996 1996, Calculus-Thomas Finny; Addison-Wiesely Puplishing Company,Inc

all calculus books

(Periodical, web sites, etc.)