

Planning and Quality Assurance Affairs

Form	(A)
------	-----

 $\mathbf{\Gamma}$

Course Specifications

General Information	
Course name	Calculus(2)
Course number	MATH1402
Faculty	
Department	
Course type	College Needs
Course level	1
Credit hours (theoretical)	3
Credit hours (practical)	1
Course Prerequisites	

Course Objectives

1 - study and recognize other important classes of functions as logarithmic functions, exponential functions and hyperbolic functions

2 - learn basic techniques of integration for functions with one variable

3 - be prepared to take more advanced courses in mathematics

- 4 understand infinite series and their convergence and divergence criteria and know how they can be used in approximation techniques
- 5 enable student to apply his knowledge to solve practical problems they encounter in phisical sciences and engineering

Intended Learning Outcomes

Knowledge and Understanding	 study and recognize other important classes of functions as logarithmic functions, exponential functions and hyperbolic functions
	 use integration by parts, trigonometric substitution, partial fraction to evaluate definite and indefinite integrals
	 define an improper integral and evaluate some classes of improper integrals by the concepts of limits, convergence and divergence
	 determine convergence or divergence of sequences and series
	 use Taylor and Maclaurin series to represent functions
	 use Taylor and Maclaurin series to integrate functions
Intellectual Skills	 develop and strengthen problem solving
	 understand concepts rather than mimic techniques
	 learn to think about problems mathematically and to solve problems independently
Professional Skills	 be able to state and explain basic calculus definitions and theorems
	 understand the relationship between the process and its corresponding inverse
	 understand the meaning and important applications of the concepts
	 have a clear understanding of the ideas of calculus as a foundation for subsequent courses in mathematics
General Skill	 hone the ability to do reality checks on calculations
	 become effective communicator and team player
	 learn to work together productively and learn to be cooperative
	 be able to communicate mathematics

Course Contents

1 -	Logarithmic and Exponential Functions : invers functions- the natural logarithmic function - the natural
	exponential function - integration - general logarithmic and exponential functions

- 2 Inverse Trigonometric and Hyperbolic Functions: inverse trigonometric functions- derivatives and integralshyperbolic functions - inverse hyperbolic functions
- 3 Techniques of integration: integration by parts trigonometric integrals trigonometric substitutions integrals of rational functions- integrals involving quadratic expressions miscellaneous substitution
- 4 Indeterminant forms and Improper Integrals: indeterminant forms and I Hopitals rule integrals with infinite limits of integration integrals with discontinous integrands
- 5 Infinite Series: sequences convergent or divergent series positive term series tests- the ratio and root testalternating series and absolute convergence- power series- power series representation of functions-Maclaurin and Taylor series- the binomial series

Teaching and Learning Methods

- 1 lectures
- 2 discussion

Students Assessment

Assessment Method	TIME	MARKS
first midterm exam	after 6 weeks of study	25%
second midterm exam	after 10 weeks of study	25%
final exam	at the end of the	50%

semester

Books and References

Essential books	Calculus, fifth edition; Earl W. Swokowski; Pws-Kent Puplisher Company, 1991
Recommended books	Calculus with analytic geometry- Robert Ellis & Denny Guhick, 1996
	1996, Calculus- Thomas Finny; Addison-Wiesely Puplishing Company,Inc
Other References (Periodical, web sites, etc.)	all calculus books

Knowledge and Skills Matrix

Main Course Contents	Study Week	Knowledge and Understanding	Intellectual Skills	Professional Skills	General Skill
inverse functions- the natural logarithmic function- the natural exponential function- integration- general exponential and logarithmic function	1-2	* study the inverse of the functions and recognize other important functions * integrate functions with certain kinds * apply the procedures of logarithmic differentiation accurately	introduce mind to the scientific method of analysis	*be able communicate mathematics * helpt to do reality chekes on calculations	* work in cooperative learning groups * use mathematic s to understand the world around him
-Inverse trigonometric and hyperbolic functions inverse trigonometric functions- derivatives and integrals- hyperbolic functions- inverse hyperbolic functions	3-5	recognize, differentiate and integrate trigonometric and hyperbolic functions	* hone the ability of the student to do reality checks on calculations * provide students with an understanding of mathematical thought and knowledge	*be able to state and explain basic calculus defenitions and theorems	* be able to communica te mathematic s * work in cooperative learning groups
integration by parts- trigonometric integrals- trigonometric substitutions- integral of rational functions- integral involving quadratic expressions- miscellaneous substitutions	6-8	study the detailed methods of integration to evaluate definite and indefinite integrals	* provide student with an understanding of mathematical thought and knowledge * introduce mind to scientific methods of analysis	understand the major problems of integral calculus	work in cooperative learning groups help to communica te mathematic s
the indeterminant forms and improper integrals- integrals with infinite limits of integration- integrals with discontiuous integrands.	9-11	* invistigate limits with indeterminant forms * study improper integrals, their convergence and divergence	* be a broblem solver * introduce mind to the scientific methods of analysis	* utilize these topics in many mthematical and physical applications	* work together productively and learn cooperativel y * demonstrat e and understand the important applications of the concepts

Sequences- convergent or	12-15	* determine	introduce mind to	* allow students to	* be a
divergent series- positive term		whether the	to the scientific	consider problems	problem
series and integral test-		sequence	methods of	that cannot be	solver
alternating series and		converges or	analysis	solved using finite	* learn
absolute convergencepower		diverges		or conventional	cooperativel
series- power series		* use		methods	y and to
representation- Taylor series		convergence		* prepare student	work
		tests to		to understand	together
		determine		other courses of	productively
		convergence of		mathematics	
		infinite series			
		*to use Taylor			
		and Maclaurin			
		series to			
		approximate			
		functions			