

Planning and Quality Assurance Affairs

Course Specifications

General Information

Form (A)

Principles Of Mathematics Course name MATH2304 Course number **Faculty Department** Major Needs **Course type** 2 **Course level** 3 **Credit hours (theoretical) Credit hours (practical)** 0 **Course Prerequisites**

Course Objectives

- 1 encourage a view of mathematics analysis as a way of thinking and as a language for communicating ideas
- 2 build a broad mathematical foundation combined with the depth of mathematical analysis and other field of

Intended Learning Outcomes

Knowledge and Understanding	 Clarify the fundamental concepts, principles and theories relating to mathematical analysis
	 Define set, inclusive, element, object, and roster notatio
	* Identify the elements of a given set
Intellectual Skills	 Conclude the essential facts, concepts, principles and theories relating to mathematical Analysis and their relationship to one another Apply mathematical analysis method in solving problems
Professional Skills	* Describe conventions used to list sets
	 List the elements of a set by describing the set and the rules that its elements follows.
	 Perform basic set operations and determine set equivalence and the cardinality of sets
	* Perform basic arithmetic operations on cardinal numbers.
General Skill	* Lead team work effectively for solving problems

Course Contents

- Logic and mathematical proofs
- 2 Set theory
- 3 Relations
- 4 Functions
- Counting and cardinality

Teaching and Learning Methods

1 - Lectures, Assignments, Discussion, Solving Problems

Students Assessment

Assessment Method	<u>TIME</u>	<u>MARKS</u>
Quizzes and Assignments		10
First Mid Term	Week 5	20
Second Mid Term	Week 10	20
Final Exam	Week 16	50

Books and References

Essential books	2. Smith, D., Eggen, M. and Andre, E. St. (2006). A transition to advanced mathematics 6th
Recommended books	3. You-Feng Lin and Shwu Yeng T Li (1985) Set Theory with Applications, Mancorp Publishing