AI Azhar University - Gaza

Planning and Quality Assurance Affairs

Course Specifications

General Information

Course name	Discrete Mathematics
Course number	MATH2307
Faculty	
Department	
Course type	Major Needs
Course level	2
Credit hours (theoretical)	3
Credit hours (practical)	0
Course Prerequisites	

Course Objectives

1 - Write and interpret mathematical notation and mathematical defenitions
2 - Recognize the connection between set operations and logic
3 - Help student to solve problems in computer science
4 - Use effectively algebraic techniques to analyse basic structures
5 - Understand some basic properties of graphs and related discrete structures and relate them to practical examples

Intended Learning Outcomes

Knowledge and Understanding	* a1. explore the concept of binary relations and their connection with direct graphs * a2. understand the issue of reachability * a3. have a good understanding of functions * a4. apply different properties of injective, surjective, bijective, composite, and inverse functions * a5. solve discrete mathematics problems that involve permutations and combinations * a6. to formulate short proof using direct proof, indirect proof, proof by contradiction * a7. understand algebraic expressions, codes and information chains * a8. find an explicit formula for the sequence * a9. calculate sequence values when an explicit formula is not available
Intellectual Skills	* b1. apply the knowledge and skills to invistigate and solve a variety of discrete mathematical problems b2. understand the notion of mathematical thinking to be able to solve a wide range of problems b3. recognize the connection between set operations and logic
Professional Skills	* c1. study logical and algebraic relationships between discrete objects * c2. provide student with all necessary background in relations and functions for any mathematical field c4. use algebraic techniques to analyze basic structures * c5. use discrete mathmatics in computer science * c6. analyze problems that have sequence solutions * c7. solve problems in computer science and probability theory * c8. prove several theorems in mathematics
General Skill	* d1. learn student to become effective communicator and a team leader * d2. learn students to work together productively and cooperatively * d3. communicate mathematics

Course Contents

1 - Directed graph and relations: directed graphs- relations- transitive closure and connectively relations- matrix representation of diagraphs and relations
2 - Relations and functions: equivalence relation and partial orderings- extremal elements in a partially ordered setset- functions- special functions
3 - Combinatories and finite probability: basic counting techniques- permutations- combination
4 - logic and proof:propositional logic- logical equivalence and tautologyies- proof techniques- introduction to mathematical induction
5 - Graph and trees: graphs- paths, circuits, and cycles- trees- spanning trees
6 - Recurrence relations and generating functionsecurrence Relation: recursion and recurrence relationsrecurrence relations and characteristic equation methods- recurrence relation and generating function

Teaching and Learning Methods

```
1 - lectures
2-exercises
```


Students Assessment

Assessment Method	TIME	MARKS
First mid-term	Week 6	25%
Second mid-term	Week 10	25%
Final Exam	Week 16	50%

Books and References

Essential books	William Barnier. Jean B.Chan; Discrete Mathematics with applications, West Puplishing Company
Recommended books	Kenneth H. Rosen, Discrete Mathematics and its applications; McGraw Hill Science

Knowledge and Skills Matrix

Main Course Contents	Study Week	Knowledge and Understanding	Intellectual Skills	Professional Skills	General Skill
directed graphs- relations -transitive closure and connectively relation- matrix representation of diagraphs and relations	$1-3$	a1, a2	b1, b2	c2	d1, d2, d3
equivalence relation and partial orderings- extremal elements in a partially orderded set- functions- special functions	$4-6$	a3, a4		b1, b2	c1, c2
basic counting techniques- permutations- combinations	$7-8$	a5	b1, b2	d1, d2, d3	
propositional logic- logical equivalence and tautology- proof techniques- introduction to mathematical induction	$9-10$	a6		b1, b2	c8
graphs- paths, circuits, and cycles- trees- spanning trees	$11-12$	a7		d1, d2, d3	
recursion and recurrence relations- recurrence relation and characteristic equation method- recurrence relation and generating functions	$13-15$	a8, a9		b1, b2	d1, d2, d3

