

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information	
----------------------------	--

Course name	Abstract Algebra(1)
Course number	MATH3314
Faculty	
Department	
Course type	Major Needs
Course level	3
Credit hours (theoretical)	3
Credit hours (practical)	0
Course Prerequisites	

Course Objectives

- 1 To understand the basic definitions in Group Theory
- 2 To be able to prove the basic theorems in group theory and use it appropriately
- 3 To solve contemporary problems according to group theory results
- 4 To explain certain algebraic facts using elementary principles
- 5 To realize the importance of the group as a fundamental object in algebra

Intended Learning Outcomes

Knowledge and Understanding	 Define and compute with examples, binary operations, binary relations, congruence of integers and congruence classes Define groups, subgroups, cyclic groups, homomorphism and related objects
Intellectual Skills	 Define groups, subgroups, cyclic groups, homomorphism and related objects Prove basic properties of groups, including Lagranges Theorem and the Isomorphism Theorems
	* Prove more advanced results about normal subgroups, and quotient groups
	 Prove more advanced results concerning groups
Professional Skills	 Create examples to illustrate the underlying theory, and work with direct sums and Finite abelian groups
	 Create examples to illustrate the underlying theory, and work with these examples
General Skill	∗ Team work
	* Presentation skills

Course Contents

- 1 Binary operations, relations, congruences of integers, congruence classes
- 2 _ Groups, subgroups, homomorphisms and isomorphisms
- 3 Finite permutation groups, cayleys theorem, normal subgroups
- 4 Quotient groups, fundamental theorem of group homomorphism
- 5 Direct sums, finite abelian groups

Teaching and Learning Methods

1 - Lectures, homework and presentationss

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
First Mid Term	week 5	20
Homework During , Attendance and participation	During semester	10
Second mid term	week 10	20
Final Exam	week 16	50

Books and References

Essential books	Linda Gilbert , Jimmie Gilbert (2015) Elements of modern algebra,8th Ed	
Recommended books	Farleigh, J. , (1994) A first course in abstract algebra, Addison-Wesley, 5th Ed	
	Joseph A. Gallian, (2002)Contemporary abstract algebra ,Houghton Mifflin Company,5th Ed	
	Herstein, I. N. (1990) Abstract algebra, Macmilling company ,2th Ed	