

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information				
Course name	Abstract Algebra(2)			
Course number	MATH3315			
Faculty				
Department				
Course type	Major Needs			
Course level	3			
Credit hours (theoretical)	3			
Credit hours (practical)	0			
Course Prerequisites				

Course Objectives

- 1 To understand the basic definitions in Ring Theory
- 2 To be able to prove the basic theorems in ring theory and use it appropriately
- 3 To solve contemporary problems according to ring theory results
- 4 To explain certain algebraic facts using elementary principles
- 5 To demonstrate the relationship of abstract algebra to other branches of mathematics and to related fields

Intended Learning Outcomes

Knowledge and Understanding	*	State the main definitions for rings, subrings, integral domains, fields and subfields State results about Ideals in a ring,quotient rings and characteristic of a ring
Intellectual Skills	*	Prove basic results including fundamental theorems of ring homomorphisms and prime ideals
Professional Skills	*	Calculate in various types of rings, such as polynomial rings,divisibility, greatest common divisor, and Factorization in F
	*	Create examples to illustrate the underlying theory, and work with zeros of polynomials,gausss lemma and Eisenstein's criterion
	*	Calculate in various types of rings, such as polynomial rings, the Gaussian integers, and certain factor rings
	*	Create examples to illustrate the underlying theory, and work with these examples
General Skill	*	Team work
	*	Presentation skills

Course Contents

- 1 Rings , sub ring , integral domains , fields and subfields , ideals, quotient rings
- 2 Homomorphisms and isomorphisms , the fundamental theorem of ring homeomorphisms
- $\mathbf 3$ the characteristic of a ring , maximal ideals , prime ideals , polynomials over a ring
- 4 $\ _{-}$ divisibility and greatest common divisor , factorization $\$ Over a field
- 5 _ zeros of a polynomial , gauss lemma , Eisenstein s criterion

Teaching and Learning Methods

1 - lectures, assignments and presntations

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
First Mid Term	week 5	20
Homework , Attendance and participation	During semester	10
Second mid term	week 10	20
Final Exam	week 16	50

Books and References

Essential books	Linda Gilbert , Jimmie Gilbert (2015) Elements of modern algebra, 8th Edition
Recommended books	Farleigh, J. (1994) A first course in abstract algebra, Addison-Wesley, 5th Ed
	I .N. Herstein (1990) Abstract Algebrad ,Macmilling company ,2th
	Joseph A. Gallian (2002) Contemporary abstract algebra, Houghton Mifflin Company, 5th Ed