

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information

Course name Medical Physics
Course number MDCN1213

Faculty

Department

Course type College Needs

Course level 1
Credit hours (theoretical) 2

Course Prerequisites

Credit hours (practical)

Course Objectives

- 1 Define the concepts of the measurements.
- 2 Define the concepts measuring length
- 3 Define the concepts of measuring time
- 4 Define the concepts of measuring weight
- 5 Differentiate between the distance, the position, and the displacement
- 6 Differentiate between the speed and the velocity
- 7 Differentiate between the average velocity and the instantaneous velocity
- 8 Define the concepts of the acceleration
- 9 Differentiate between the average acceleration and the instantaneous acceleration
- 10 Differentiate between the linear acceleration and the free fall acceleration

Intended Learning Outcomes

Knowledge and Understanding	 Define the physical quantities, physical phenomena, and basic principles of physics related to the course.
	* Record the physical quantity at the lab
	 Express the physical laws related to the course using mathematics
Intellectual Skills	 Calculate the physical quantity related to the course
	* Solve physical problems
	 Determine some physical quantity at the lab.
Professional Skills	* Drive physics laws
	* Determine some physical quantity at the lab.
General Skill	* Work effectively in groups
	 Show responsibility for self-learning to be aware with recent developments in physics

Course Contents

- 1 Vectors and Scalars.
- 2 Motion in one dimension
- 3 Motion in two and three dimensions
- 4 _ Force and motion
- 5 Fluid dynamics
- 6 Temperature, Heat and the first law of Thermodynamics.
- 7 Reflection and refraction of light at plane surface
- 8 Experimental part at the lab of general physics

Teaching and Learning Methods

- 1 Lectures
- 2 Laboratory/Studio
- 3 Tutorial

Students Assessment

Assessment Method	<u>TIME</u>	<u>MARKS</u>
Home works		5
Scientific activities		5
Midterm Exam (theoretical)	1 hr	20
Lab. Reports (Practical)		10
Final Exam (Practical)		10
Final Exam (theoretical)	2 hr	60

Books and References

Course note	Halliday and Resnick and Jearal Walker, "Fundamental of Physics" 8 edition, Wiley, 2008.	
	Physics, 4th edition , By: Halliday, Resnick, and Krane, Wiley (1992)	
	Physics , 4th edition, By: J. Walker (2010)	