

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information

Course name Introduction to Math. Physics

Course number PHYS2301

Faculty

Department

Course type Major Needs

Course level 2

Credit hours (theoretical) 3

Credit hours (practical) 0

Course Prerequisites

Course Objectives

1 - The educational approach of this subject suggests combining mathematical concepts and knowledge with the real-world application of physics phenomena, while fostering the development of problem-solving abilities and skills through practical examples. Additionally, interactive forums for student discussions aim to enhance the practical aspects learned during lectures and experiences beyond the classroom environment.

Intended Learning Outcomes

thrended Learning Odicomes					
Knowledge and Understanding		Solve differential equations of first order using graphical, numerical, and analytical methods,			
	* 5	Solve and apply linear differential equations of second order			
		Develop the ability to apply differential equations to significant applied and/or heoretical problems.			
	* (Jse matrix algebra and the related matrices to linear transformations,			
	* (Compute and use determinants,			
	* (Compute and use eigenvectors and eigenvalues,			
	* [Differentiate vector fields			
	* [Determine gradient vector fields and find potential functions			
	p	The differential ideas of divergence, curl, and the Laplacian along with their obysical interpretations, using differential forms or tensors to represent derivative operations,			

Course Contents

- 1 First order ODE: integrating factor, initial value problem, homogenous, physics examples.
- 2 Second order ODE: reduction order, homogenous, nonhomogeneous, with constant coefficients, repeated roots, complex roots, Method of undermined coefficients, Wronskian and linear independence, variation of parameters, Cauchy-Euler differential equations, Green's Method, introduction to power series solutions,
- 3 Linear Algebra and Vector Calculus (1.5 Month) Vector, Basis, linear combination, Linear Transformation and matrices, Matrix multiplication, The Determinant, Inverse of a Matrix, Dot product, cross product, Eigenvalues and Eigen vectors, trace, Unitary, Hermitian, adjoint, Line integral, Vector filed, gradient, line integral of a vector filed, conservative vector field, Curl or circulation of a vector field, Divergence, Flux, and Green's theorem, Stock's theorem, Laplacian, change coordinates to: cylindrical and spherical.

Teaching and Learning Methods

- 1 lectures
- 2 Homeworks

Students Assessment

Assessment Method	<u>TIME</u>	<u>MARKS</u>
Homework	Weekly	30
Midterm	60 min	30
Final	120 minute	40

Books and References

Course note	 Essential Mathematical Methods for Physicists, Arfken, and Weber, Academic Press, 2003.
	 Mathematical Methods for Physics and Engineering, Riley, Hobson, and Bence, Cambridge University Press 2006.
	3. Mathematical methods of theoretical Physics, Karl Svozil, third edition, 2015
	4. Advanced Engineering Mathematics, Erwin O. Kreyszig, 10th Edition, 2011

Knowledge and Skills Matrix

Main Course Contents	Study Week	Knowledge and Understanding	Intellectual Skills	Professional Skills	General Skill
Differential Equations: (Two					
Month)					
First order ODE: integrating					
factor, initial value problem,					
homogenous, physics					
examples.					
Second order ODE: reduction					
order, homogenous,					
nonhomogeneous, with					
constant coefficients,					
repeated roots, complex					
roots, Method of undermined					1
coefficients, Wronskian and					
linear independence, variation					
of parameters, Cauchy-Euler					
differential equations, Green's					
Method, introduction to power					
series solutions,					
Part II:					
Linear Algebra and Vector					
Calculus (1.5 Month)					
Vector, Basis, linear					
combination, Linear					
Transformation and matrices,					
Matrix multiplication, The					
Determinant, Inverse of a					
Matrix, Dot product, cross					
product, Eigenvalues and					
Eigen vectors, trace, Unitary,					
Hermitian, adjoint, Line					
integral, Vector filed, gradient,					1
line integral of a vector filed,					1
conservative vector field, Curl					1
or circulation of a vector field,					1
Divergence, Flux, and Green's					1
theorem, Stock's theorem,					1
Laplacian, change					1
coordinates to: cylindrical and					1
spherical.					