

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information

Course name Mathematical Physics

Course number PHYS4329

Faculty

Department

Course type College Needs

Course level

Credit hours (theoretical) 3

Credit hours (practical)

Course Prerequisites

Course Objectives

- 1 Study Complex Numbers and Functions.
- 2 Study the Complex Integration
- 3 Study Power Series, Taylor Series
- 4 Study Laurent Series. Residue Integration

Course Contents

- 1 Complex Numbers and Their Geometric Representation
- 2 Polar Form of Complex Numbers. Powers and Roots
- 3 Derivative. Analytic Function
- 4 Cauchy-Riemann Equations. Laplace's Equation
- 5 Exponential Function
- 6 Trigonometric and Hyperbolic Functions. Euler's Formula
- 7 Logarithm. General Power. Principal Value
- 8 Line Integral in the Complex Plane
- 9 Cauchy's Integral Theorem
- 10 Cauchy's Integral Formula
- 11 Derivatives of Analytic Functions
- 12 Sequences, Series, Convergence Tests
- 13 Power Series
- 14 Functions Given by Power Series
- 15 Taylor and Maclaurin Series
- 16 Uniform Convergence. Optional
- 17 Laurent Series
- 18 Singularities and Zeros. Infinity
- 19 Residue Integration Method
- 20 Residue Integration of Real Integrals

Books and References

Essential books ADVANCED ENGINEERING MATHEMATIC ERWIN KREYSZIGS 10TH ed