

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information

Course name
Course number
AMSR2303

Faculty
Department
Course type
Major Needs

Course level
Credit hours (theoretical)
Credit hours (practical)

Course Prerequisites

Course Objectives

- 1 the principles physics of x-ray radiation
- 2 familiarized with the production, properties and interaction of x-ray with the matter
- 3 the basic principle of electromangetic radiation
- 4 be familiar with modes of radioactivity
- 5 principle of raidation protection

Intended Learning Outcomes

Knowledge and Understanding	* Interaction of radiation with matter	
	* X-ray Production	
	* the student will be familiar with a mode of radioactivity, physical half life	
	 the student will be professionals with how to get artifical radioactive substance 	
	* the student will be good with the units of raidation and how to calcuate it	
Professional Skills	* Radiation Unit	
	* X-ray Properties	

Course Contents

- 1 Basic principle of modern physics
- 2 MASS & ENERGY
- 3 Electromagnetic Radiation
- 4 _ Quantum Theory: X-ray Photons
- 5 X-ray production
- 6 X-ray Interaction and principles of imaging
- 7 The basic elements of x-ray imaging,
- 8 Diagnostic x-ray sources and imaging systems
- 9 _ modes of radioactive decay
- 10 production of radioactive substance
- 11 production of radioactive substance
- 12 units of radiation
- 13 radiation protection devices

Teaching and Learning Methods

- 1 Lecturer-power point notes
- 2 videso
- 3 seminars

Teaching and Learning Methods for the Disabled Students

1 - electronic lectures

Students Assessment

Assessment Method	<u>TIME</u>	<u>MARKS</u>
homeworks and presentation and attendence	during the semester	30
midterm exam	the seventh week	30
final exam	at the end of the	40

semster

Books and References

Recommended books	 Jens Als-Nielsen, Des McMorrow Elements of Modern X-ray Physics, 2nd Edition, 2011UK. 	
	James E. Martin, Physics for Radiation Protection: A Handbook, Second Edition; 2006 WILEY-VCH Verlag GmbH & Co.KGaA	

Knowledge and Skills Matrix

Main Course Contents	Study Week	Knowledge and Understanding	Intellectual Skills	Professional Skills	General Skill
Introduction to Radiation	1				
Ionizing Radiation Types	2				
Interaction of Radiation with Matter	3				
Wave model and particle model	4				
Inverse Square Law	5				
ELECTRODYNAMICS	6				
Laws of Magnetism	7				
ELECTROMAGNETIC SPECTRUM	8				
Velocity & Amplitude	9				
Frequency and wavelength	10				
Radiologically Important Photons	11				
Quantum Theory: X-ray Photons	12-13				
PHYSICS OF RADIOBIOLOGY	14-15				