

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information		
Course name	RADIOBIOLOGY	
Course number	AMSR3285	
Faculty		
Department		
Course type	Major Needs	
Course level	3	
Credit hours (theoretical)	2	
Credit hours (practical)	0	
Course Prerequisites		

Course Objectives

- To provide a fundamental knowledge of the mechanisms and biological responses of human beings to ionizing and non-ionizing radiations through the study of the effects of radiation on biological molecules, cells, and man including cancer and mutagenesis.
- 2 The course will develop the ability to make objective decisions regarding the relative risks and benefits of radiation use in a variety of applications
- 3 To understand the principle of radiation interaction with matter

Intended Learning Outcomes

Knowledge and Understanding	Explain the basics of ionizing radiation biological effects and risks from cellular to human	
	 Summarize the factors that affect the dose-effect relationship 	
	 Summarize acute and late effects from ionizing radiation 	
Intellectual Skills	 Planning and implementing radiation protection education/information for patients, general public or professionals 	
Professional Skills	 Explain the principles of radiation protection for both ionizing and non-ionizing radiation 	
	 Understanding the dose-response curves 	
	 Applying Radiation Protection Act and the relevant radiation protection regulations 	

Course Contents

- 1 The course covers basic knowledge on biological effects of radiation and risks on cellular level to humans, factors that affect the dose-effect relationship and a deeper knowledge on radiation protection for ionizing and non-ionizing radiation, both in legislation and practical radiation protection technology.
- 2 The course covers radiation effects at cellular level including the formation of free radicals, chromosome breakage and repair mechanisms as well as target theory and the dose-response curves
- 3 It also includes radiation effects on individual organs and humans, somatic, genetic as well as immediate and late radiation damages and factors affecting the relationship between dose and biological effects
- 4 _ Irradiation-induced damage and the DNA damage response
- 5 Cell death after irradiation: how, when and why cells die
- 6 Quantifying cell kill and cell survival
- 7 Linear energy transfer and relative biological effectiveness

Teaching and Learning Methods

- 1 Standard lectures
- 2 Project Based Learning
- 3 Group discussion and class activities

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
Assignments	the first trimester	30%
Midterm exam	Week 8	30%
Final Exam	Week 15	40%

Books and References

Essential books	Basic Clinical Radiobiology Ed: Michael Joiner & Albert van der Kogel, 5th Edition, Hodder Arnold, London UK Please order it for yourself (ex: Amazon). An additional copy is in the physics library
Recommended books	Radiobiology for the Radiologist Eric Hall, 7th (2011) Lippincott Williams & Wilkins, Philadelphia PA