

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information

Course name

Course number

AMSR4298

Faculty

Department

Course type

Major Needs

Course level

Credit hours (theoretical)

Credit hours (practical)

Course Prerequisites

Magnetic Resonance Imaging Techniques

AMSR4298

AM

Course Objectives

- 1 To provide hands-on experience in acquiring and processing MRI data using different imaging protocols.
- 2 To introduce students to the fundamental principles of magnetic resonance imaging (MRI) and its applications.
- 3 To understand the clinical applications of MRI and its role in medical diagnostics.
- 4 To explore advanced MRI techniques, including functional MRI (fMRI) and diffusion MRI.
- 5 To develop practical skills in acquiring, analyzing, and interpreting magnetic resonance data.

Intended Learning Outcomes

Knowledge and Understanding	*	Explain different MRI imaging protocols and their respective applications
	*	Discuss the factors influencing image quality in MRI.
Intellectual Skills	*	Critically evaluate and select appropriate imaging protocols for specific clinical or research scenarios.
	*	Analyze and interpret MRI images to identify anatomical structures and pathological conditions.
Professional Skills	*	Apply standard safety protocols and guidelines in MRI practice.
	*	Collaborate with interdisciplinary teams in the planning and execution of MRI studies.
General Skill	*	Utilize appropriate software tools for image processing and analysis in MRI.
	*	Acquire and handle MRI data using proper protocols and techniques.

Course Contents

- 1 Pulse sequence design and selection.
- 2 Tissue weighting and parameter selection.
- 3 Artifacts and their mitigation.
- 4 _ Image reconstruction techniques.
- 5 Image enhancement and filtering.
- 6 Spine MR imaging.
- 7 Brain MR imaging.
- 8 Musculoskeletal MR imaging
- 9 _ Abdominal MR imaging.
- 10 Pelvis MR imaging.
- 11 Cardiovascular MR imaging.
- 12 Neck and Chest MR imaging
- 13 Angiographic imaging.
- 14 _ Oncological MR imaging.

Teaching and Learning Methods

- 1 Lectures: In-depth presentations by the instructor on advanced medical imaging principles and applications.
- 2 Case Studies: Analysis and interpretation of advanced medical images in clinical scenarios.
- Group Discussions: Interactive discussions on research papers and emerging trends in advanced medical imaging.
- Independent Study: Assigned readings and research to deepen understanding of advanced medical imaging.

Teaching and Learning Methods for the Disabled Students

- 1 Providing accessible course materials in alternative formats (e.g., electronic).
- 2 Ensuring physical accessibility to classrooms and practical sessions.
- 3 Offering assistive technologies or tools for students with disabilities.

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
First Quiz and Assignment	Week 3	10
Second Quiz and Assignment	Week 6	10
Midterm Exam	Week 8	30
Third Quiz and Assignment	Week 10	10
Final Exam	Week 15	40

Books and References

Essential books	Dale, B. M., Brown, M. A., & Semelka, R. C. (2015). MRI: Basic principles and applications. John Wiley & Sons. Westbrook, C., & Talbot, J. (2018). MRI in practice. John Wiley & Sons.
	Saba, L. (2015). Magnetic resonance imaging handbook. CRC Press.
Recommended books	Yamada, K. (2021). Advances in diffusion-weighted imaging, an issue of magnetic resonance imaging clinics of North America. Elsevier Health Sciences.
Other References (Periodical, web sites, etc.)	Rich, W. Z., & Grey, M. (2023). LANGE review: MRI clinical concepts and imaging applications manual with registry review. McGraw Hill Professional.