

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information

Course name
Course number
AMSR4299

Faculty

Department

Course type
Major Needs

Course level
Credit hours (theoretical)
Credit hours (practical)

Course Prerequisites

AMSR4299

AMSR429P

AMSR429P

AMSR429P

AMSR429P

AMSR42P

AM

Course Objectives

- 1 To provide a comprehensive understanding of advanced imaging modalities used in medical diagnostics and research.
- 2 To develop skills in image interpretation, analysis, and diagnosis using advanced medical imaging modalities.
- 3 To familiarize students with emerging trends and advancements in medical imaging technology.
- 4 To promote critical thinking and research methodology in the interpretation and application of advanced medical imaging.
- 5 To explore the clinical applications and limitations of advanced medical imaging techniques.

Intended Learning Outcomes

Knowledge and Understanding	 Discuss the relevance and appropriateness of different imaging techniques in specific clinical scenarios.
	 Understand the role of advanced imaging in the diagnosis, staging, and follow-up of various medical conditions.
Intellectual Skills	 Analyze and interpret complex medical imaging studies accurately.
	 Evaluate the quality and validity of advanced imaging examinations.
Professional Skills	 Demonstrate proficiency in performing advanced imaging procedures using appropriate equipment and techniques.
	 Communicate effectively with patients, healthcare professionals, and colleagues in a multidisciplinary setting.
General Skill	 Stay updated with the latest research and advancements in the field of medical imaging.
	 Adapt to technological advancements and changes in the medical imaging landscape.

Course Contents

- 1 Overview of advanced medical imaging modalities and their applications.
- 2 Comparison of different imaging modalities for specific applications
- 3 Quantitative analysis techniques in medical imaging
- 4 _ Image segmentation, registration, and fusion methods
- 5 Image-guided interventions and surgical planning
- 6 Advanced CT imaging techniques
- 7 Dual-energy CT and spectral imaging.
- 8 Advanced techniques and sequences in MRI.
- 9 Functional MRI (fMRI) for studying brain function.
- 10 Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI).
- 11 Clinical applications of PET imaging in oncology, cardiology, and neurology.
- 12 Clinical applications of SPECT imaging in cardiology, neurology, and nuclear medicine.
- 13 Emerging Trends in Advanced Medical Imaging:
- 14 Hybrid imaging techniques (PET-CT, SPECT-CT, PET-MRI).
- 15 Molecular imaging and targeted imaging agents.
- 16 Artificial intelligence and machine learning in advanced medical imaging.

Teaching and Learning Methods

- 1 Lectures: In-depth presentations by the instructor on advanced medical imaging principles and applications.
- 2 Case Studies: Analysis and interpretation of advanced medical images in clinical scenarios.
- 3 Group Discussions: Interactive discussions on research papers and emerging trends in advanced medical imaging.
- Independent Study: Assigned readings and research to deepen understanding of advanced medical imaging.

Teaching and Learning Methods for the Disabled Students

- 1 Providing accessible course materials in alternative formats (e.g., electronic).
- 2 Ensuring physical accessibility to classrooms and practical sessions.
- 3 Offering assistive technologies or tools for students with disabilities.

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
First Quiz and Assignment	Week 3	10
Second Quiz and Assignment	Week 6	10
Midterm Exam	Week 8	30
Third Quiz and Assignment	Week 10	10
Final Exam	Week 15	40

Books and References

Essential books	Grant, L. A., & Griffin, N. (2018). Grainger & Allisons diagnostic radiology essentials E-book. Elsevier Health Sciences.
	Sacerdoti, F. M., Giordano, A., & Cavaliere, C. (2016). Advanced imaging techniques in clinical pathology. Humana Press.
	Sandhu, M. S., Garg, A., & Gupta, A. K. (2019). Comprehensive textbook of diagnostic radiology: Three volume set. Jaypee Brothers Medical Publishers.
	Subasi, A. (2022). Applications of artificial intelligence in medical imaging. Elsevier.
Recommended books	Li, Q., & Nishikawa, R. M. (2015). Computer-aided detection and diagnosis in medical imaging. Taylor & Francis.
	Khandelwal, N., Gupta, A. K., & Garg, A. (2018). Diagnostic radiology: Neuroradiology including head and neck imaging. Jaypee Brothers Medical Publishers.