

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information

Course name Physics of Nuclear Medicine

Course number AMSR4372

Faculty

Department

Course type Major Needs

Course level 4

Credit hours (theoretical) 3

Credit hours (practical) 0

Course Prerequisites

Course Objectives

- To understand principle of radiation safety, health physics, and the various studies performed in a Nuclear Medicine area
- 2 To be familiarize with fundamental physical aspects of nuclear medicine, including radiation detection and spectrum analysis
- 3 To recognize image formation, processing, and display; criteria for image evaluation
- 4 To understand performing methods of gamma ray and positron tomography, stimulated x-ray fluorescence, and activation analysis

Intended Learning Outcomes

Knowledge and Understanding	*	The student will demonstrate a basic understanding of the history and development of Nuclear Medicine and the basic math and science needed for application of Nuclear Medicine in radiation safety and instrumentation
	*	The student will explain the radioactive decay process and the interaction of ionizing radiation with matter; describe the operation of the electrical components of various radiation detection systems
Professional Skills	*	The course describes and differentiates the various imaging systems including scintillation cameras, multi-crystal cameras, and tomographic imaging systems: and discuss and apply the best quality control measures for continuous quality improvement
General Skill	*	The student will explain the principles and employ the methodologies of radiation safety and health physics; and exhibit comprehension of the studies and procedures performed in a Nuclear Medicine clinic

Course Contents

- 1 Basics of Nuclear Medicine
- 2 Physics & Instrumentation Nuclear Medicn
- 3 Nuclear Medicine Radiopharmacy
- 4 Radiation Biology & Safety Bridge
- 5 PET/CT
- 6 Radiation SafetyQuality Mgmt. for CT

Teaching and Learning Methods

- 1 Power point notes
- 2 lectures notes

Students Assessment

Assessment Method	<u>TIME</u>	<u>MARKS</u>
First mid term	after the first month	20
second mid term	after the second month	20
attendance	the whole semister	5
quiz	during the seventh week	5
Final exam	the end of semister	50

Books and References

Essential books	Clinical Nuclear Medicine Biersack, (2007
Recommended books	Essentials of Nuclear Medicine Imaging, 6th Revised edition, Elsevier - Health Sciences Division, 2012