

Planning and Quality Assurance Affairs

Course Specifications

Course name	Physics of Radiotherapy
Course number	AMSR4395
Faculty	
Department	
Course type	Major Needs
Course level	4
Credit hours (theoretical)	3
Credit hours (practical)	0
Course Prerequisites	

Course Objectives

- 1 The aim of the Radiotherapeutic Physics unit of study is to provide candidates with the knowledge of physics and its clinical application. This knowledge is a fundamental requirement in forming the foundation of competent radiation oncologists
- 2 Apply physics knowledge to safely use ionising radiation
- 3 Justify the use of ionising radiation in clinical radiotherapeutic practice
- 4 Differentiate between different treatment approaches and optimise solutions to clinical problems, based on physical concepts

Intended Learning Outcomes

Knowledge and Understanding	Independently describe the most common treatment techniques in radiation therapy	
	Demonstrate insight into modern and future technologies for radiation delive and dose planning	ry
Professional Skills	Be able to apply international conventions for target definition and standardization	
	Critically evaluate biological models for radiation therapy	
	Critically evaluate dosage plans for external beam radiation therapy	
General Skill	Independently calculatethe absorbed dose to the patient for photons and charged particles.	
	Have insight into dose planning and dose specifications for both external radiation therapy and Brachytherapy	

Course Contents

- 1 The course deals with different methods and highlights key safety aspects of radiotherapy and provides a good basis for work as a medical physicist in a radiotherapy department
- 2 The course covers methods of internal and external radiotherapy, intensity modulation, as well as combination treatment with surgery, chemotherapy or hyperthermia
- 3 Different calculation algorithms for treatment planning, the impact of inhomogeneities, simulation and control systems as well as radiation biological aspects of radiation therapy with models for fractional treatment are studied
- 4 _ EXTERNAL BEAM RADIATION SOURCES
- 5 COMMISSIONING AND QUALITY ASSURANCE OF RADIOTHERAPY EQUIPMENT
- 6 CHARACTERISTICS OF PHOTON BEAMS
- 7 DOSE DISTRIBUTION IN TISSUE PRODUCED BY EXTERNAL BEAM PHOTON RADIATION
- 8 PHYSICAL CHARACTERISTICS AND CLINICAL APPLICABILITY OF PROTON BEAMS

Teaching and Learning Methods

- 1 Standard lectures
- 2 Project Based Learning
- 3 Class activities
- 4 Animation Videos

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
Assignments	the first trimester	30%
Midterm exam	Week 8	30%
Final Exam	Week 15	40%

Books and References

Course note	Khan FM: "The Physics of Radiation Therapy" 2nd Edition Williams and Wilkins (1994)
Essential books	Metcalfe P, Kron T & Hoban P: "The Physics of Radiotherapy X-Rays from Linear Accelerators" (1997)
	Mayles, P., Nahum, A., & Rosenwald, J. C. (2007). Handbook of radiotherapy physics: theory and practice. CRC Press
Recommended books	Williams JR & Thwaites DI (Eds): "Radiotherapy Physics in Practice" OUP (1993)