

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information					
Course name	Discrete Structures				
Course number	ITCS2311				
Faculty					
Department					
Course type	Major Needs				
Course level	2				
Credit hours (theoretical)	3				
Credit hours (practical)	0				
Course Prerequisites					

Course Objectives

- 1 Describe the definitions and properties of a variety of specific types of discrete structures.
- 2 Correctly read, represent and analyze various types of discrete structures using standard notations.
- 3 Introduce logic and the methods of proofs.
- 4 Explore the basics of counting techniques.
- 5 Study the concepts of relations.
- 6 Introduce the concepts of graphs, trees and groups.

Intended Learning Outcomes

Knowledge and Understanding	 * a1. Explain the concepts of relations and their properties, and equivalence relations.
	* a2. Discuss and identify core of analysis, algebra and applied mathematics.
Intellectual Skills	 b1. Identify appropriate methods of proof
	 b2. Identify a range of solutions and critically evaluate and justify proposed design solutions.
	* b3. Perform comparisons between (methods, techniquesetc).
	 b4. Summarize the proposed solutions ad their results.
	 b5. Restrict solution methodologies upon their results.
	 b6. Establish criteria, and verify solutions
Professional Skills	 c1. Solve related problems in sets, sequences and series.
	 c2. Apply basic the logic principles
	 c3. Solve related problems in graphs and tree.
	 c4. Apply tools and techniques for the design and development of applications.
General Skill	 * d1. Communicate effectively by oral, written and visual means.
	 * d2. Work effectively as an individual and as a member of a team.
	 * d3. Exhibit appropriate numeracy skills in understanding and presenting cases involving a quantitative dimension
	 * d4. Develop Creativity and imagination skills, Self-assessment ability and Critical thinking and analytic ability.

Course Contents

1 - Logic and truth tables

2 - Universal proof techniques: Implications, converse, inverse, direct proof. Proof by counterexample, contraposition, and contradiction mathematical Induction

- 3 Relations, sets, functions, recurrence relations
- 4 Graphs and trees: Undirected graphs, directed graphs, trees, spanning trees
- 5 Counting methos: Permutations and combinations

Teaching and Learning Methods

- 1 Lectures
- 2 Exercises
- 3 Projects

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
Mid-Term Exam	6th week	30
project and/ or Assignments	12th week	20
Final Exam	16th week	50

Books and References

Essential books Kenneth H. Rosen, Discrete Mathematics and Its Applications, McGrawHill Science, 2006.

Knowledge and Skills Matrix

Main Course Contents	Study Week	Knowledge and Understanding	Intellectual Skills	Professional Skills	General Skill
Logic and truth tables	1-3	a1, a2	b1-b6	c1, c4	d1-d4
Universal proof techniques: Implications, converse, inverse, direct proof. Proof by counterexample, contraposition, and contradiction mathematical Induction	4-6	a2	b1-b6	c2, c4	d1-d4
Sets, Relations, Functions and recurrence relations	7-9	a2	b1-b6	c4	d1-d4
Graphs and trees: Undirected graphs, directed graphs, trees, spanning trees	10-12	a2	b1-b6	c3, c4	d1-d4
Counting methods: permutaions and combinations	13-15	a2	b1-b6	c4	d1-d4