

Planning and Quality Assurance Affairs

Form (A)

Course Specifications

General Information	
----------------------------	--

Course name	Automata Theory
Course number	ITCS3314
Faculty	
Department	
Course type	College Needs
Course level	3
Credit hours (theoretical)	3
Credit hours (practical)	0
Course Prerequisites	

Course Objectives

- 1 specify the relationship between the four classes of languages, grammars, and automata, and explain why they are so related
- 2 convert expressions from grammar form to automata and from automata to grammar
- 3 show competence in the application of the major proof forms (the pumping lemmas) common to the study of theory of computer science
- 4 understand the limits of computing and have an introductory knowledge of complexity theory.
- 5 Learning some important applications in fields of digital design, programming languages and compiler.
- 6 Problem solving in games.

Intended Learning Outcomes

Knowledge and Understanding	* a1. Describe precisemathematical claims using a range of fundamental
	definitions from discrete math and formal languages.
	 a2. Discuss formal language and their applications
	 * a3. Explain detailed knowledge of foundational results for regular languages and finite automata.
	 * a4. Identify foundational results for context-free languagesand pushdown automata.
Intellectual Skills	 b1. Systematically apply knowledge of the formal language and methods of related systems in the identification and solution of theproblems
	 b2. Display sound judgment in the evaluation and selection of methods and tools appropriate for a given problem.
	 b3. Analyzes and evaluate a range of options in producing a solution to an identified problem.
	 b4. Evaluate problems solution results from a variety of sources
	 b5. Critically assess the assumptions and values of proposed approaches and therelationship between theory and practice.
Professional Skills	 systematically apply appropriate methods to develop an algorithm to appropriate application
	 * c2. Apply new techniques in the planning and implementation of the algorithms.
	 x c3. Knowledge of automata with output and applications
	 c4. Ability to apply the Pumping Lemma for context-freelanguages to show that a language is not context-free.
General Skill	 * d1. Manage tasks effectively.
	 Ability to share ideas and communicate with others
	 d3. Communicate effectively by oral, written and visual means.
	 d4. Work effectively as an individual and as a member of a team.
	 d5. The ability to interact with the automaton theorem.

Course Contents

- 1 Deterministic Finite automata, Nondeterministic finite automata, NFA's with lambda-transitions, Converting NFA to DFA.
- 2 Minimizing in DFA's, Finite automata with output.
- 3 Regular expressions and regular sets. Equivalence of regular sets and finte automata, Generalized transition graph, pumping lemma,
- 4 Context Free Grammar, Derivation, derivation tree, ambiguous.
- 5 Simplification of CFG, lambda-productions, unit-productions, Useless-productions, chomsky normal form, CYK-algorithm, Regular grammar and regular languages

Teaching and Learning Methods

- 1 Lectures
- 2 Exercises
- 3 Projects

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
Mid-Term Exam	6th week	30
projects and/or Assignments	12th week	20
Final Exam	16th week	50

Books and References

Essential books

Linz, Peter. An Introduction to Formal Languages and Automata, 4th Ed. Sudbury, MA: Jones and Bartlett Publishers, 2006

Knowledge and Skills Matrix

Main Course Contents	Study Week	Knowledge and Understanding	Intellectual Skills	Professional Skills	General Skill
Deterministic Finite automata, Nondeterministic finite automata, NFA's with lambda-transitions, Converting NFA to DFA.	1-3	a1, a2	b1, b2	c1	d1, d2, d3, d5
Minimizing in DFA's, Finite automata with output.	4-6	a1,a2,a3	b1,b2	c1,c2	d1,d2,d3,d5
Regular expressions and regular sets. Equivalence of regular sets and finte automata, Generalized transition graph, pumping lemma,	7-9	a1, a3	b1-b3	c1	d1-d5
Context Free Grammar, Derivation, derivation tree, ambiguous.	10-12	a1, a4	b4	c1,c2,c4	d2,d5
Simplification of CFG, lambda-productions, unit-productions, Useless-productions, chomsky normal form, CYK-algorithm, Regular grammar and regular languages	13-15	4a5	b5	c4	d2, d5