

Planning and Quality Assurance Affairs

Course Specifications

Course name	Performance Modeling		
Course number	ITCS4343		
Faculty			
Department			
Course type	Major Needs		
Course level	4		
Credit hours (theoretical)	3		
Credit hours (practical)	0		
Course Prerequisites			

Course Objectives

- 1 Apply queueing based models to characterize computer (communication) systems
- 2 Use appropriate analytical and/or numerical tools to compute performance measures of interest (i.e., thruput, response time, etc) for a given queueing system
- 3 Select the system characateristics (e.g., memory capacity) to achieve a given level of performance
- 4 Compare the relative merits of alternative system designs

Intended Learning Outcomes

Knowledge and Understanding	 a1 Modeling of stochastic service systems
	 a2 Elementary queuing theory
	 a3 Simulation techniques and simulation tools
	 a4 Application to communication and computer systems
	* a5 System resource management
	 a6 Network and system planning
Intellectual Skills	 b1 Evaluate the relative merits of alternative system design solutions
	 b2 Engage in research in the field of performance analysis and evaluation
Professional Skills	 c1 Apply simulation techniques to develop models of computer and communication systems
	 c2 Appy queueing-based models to characterize computer and communication systems
	 c3 Use appropriate analytic tools to compute performance measure of interest (e.g., response time and throughput) for a given queueing system
	 c4 Select the system characteristics (e.g., storage capacity) to achieve a given level of performance
General Skill	 d1 The ability to quantify and compare collections measured performance data, understanding basic statistical methods
	 d2 An understanding of how simulators and simulation systems are developed; the proper use of those systems including termination, repeated measurements, sampling and transient removal
	 d3 The ability to apply operational laws to computer analysis problems
	 d4 The ability to analyze simple queue networks and understand the limitations and benefits of those networks
	 d5 The ability to analyze simple mean-value analysis networks and understand the limitations and benefits of those networks
	 d6 The ability to display and convey performance measurement data in a meaningful manner that reveals the data in a method best understood by humans

Course Contents

- 1 _ Introduction
- 2 Generation of random numbers and stochastic variates
- 3 _ Simulation designs
- 4 Estimation techniques for analyzing endogenously created data
- 5 Validation
- 6 Sochastic processes and Markov processes
- 7 Poisson process
- 8 _ Birth-death processes
- 9 The M/M/1 queue and variants
- 10 Erlang and Coxian distributions as models of service time
- 11 The M/G/1 queue
- 12 Priority queueing and conservation laws

Teaching and Learning Methods

- 1 Lecture Notes
- 2 Seminars
- 3 Projects

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
Midterm Examination	Week 8	30
Project Implementation and Presentation	During the Semester	20
Final Examination	Week 16	50

Books and References

Essential books	L. Kleinrock, Queueing Systems, vol. 1: Theory, Wiley. ISBN: 0-471-49110-1			
Recommended books	L. Kleinrock, Queueing Systems, vol. 2: Computer Applications, Wiley			
	W. Drake, Fundamentals of Applied Probability Theory, McGraw-Hiil (or any other book on probability theory and transforms)			

Knowledge and Skills Matrix

Main Course Contents	Study Week	Knowledge and Understanding	Intellectual Skills	Professional Skills	General Skill
Introduction	1	a1		c1	
Generation of random numbers and stochastic variates	2	a2			
Generation of random numbers and stochastic variates (Cont.) + Simulation designs	3	a2			
Simulation designs (Cont.)	4	a2,a3		c2	d1
Estimation techniques for analyzing endogenously created data	5	a4	b1	c1-c3	d1-d2
Validation	6	а5	b1	c4	d3
Sochastic processes and Markov processes	7	a6	b2	c4	d3
Sochastic processes and Markov processes (Cont.) + Poisson process	8	a5	b2	c4	d4
Poisson process (Cont.)	9	а6	b2	c2	d5
Birth-death processes	10	a2	b1	c3	d5
The M/M/1 queue and variants	11	a3	b2	c1	d2,d5
Erlang and Coxian distributions as models of service time	12	a1,a3	b1	c2	d1-d4
Erlang and Coxian distributions as models of service time (Cont.) + The M/G/1 queue	13	a1,a3	b1	c2	d1-d4
The M/G/1 queue (Cont.)	14	а3		c2	d6
Priority queueing and conservation laws	15	a5	b2	c4	d2-d6