

Planning and Quality Assurance Affairs

Form ((A)
--------	-----

Course Specifications

Course name	Introduction to Software Engineering
Course number	ITSE2301
Faculty	
Department	
Course type	Major Needs
Course level	2
Credit hours (theoretical)	3
Credit hours (practical)	0
Course Prerequisites	

Course Objectives

- 1 Student will be able to appreciate the importance of software engineering
- 2 Student will be able to acquire knowledge of modeling software systems
- 3 Student will be able to develop skills to model small software applications
- 4 Student will be able to apply software engineering principles when developing software
- 5 Student will be able to acquire knowledge of software architectural patterns
- 6 Student will be able to give details of various software development processes, methods, and tools

Intended Learning Outcomes

Knowledge and Understanding	* Student will be able to explain the importance of software engineering
	 Student will be able to explain the challenges facing the development of software
	 Student will be able to describe software development processes, and their activities, and articulate the applicability and diversity
	* Student will be to explain causes of software change
	 Student will be able to explain the motivations behind the development of rapid software development processes
	 Student will be able to describe the principles of agile methods and practices of XP
	 Student will be able to discuss features and drawbacks of agile-based project management
	 Student will be able to describe requirements engineering process, requirements fundamental activities, and development methods
	* Student will be able to explain and apply requirements validation method
	 Student will be able to describe requirements change and management processes and related activities
	 Student will be able to describe architectural patterns, and their pros and cons
Intellectual Skills	 Student will be able to discuss the attributes of good software
	 Student will be able to differentiate between software engineering and other related disciplines
	 Student will be able to discuss professional responsibilities and ethical principles and issues related to the behavior of software engineer
	 Student will be able to describe the software development model, and their activities, and articulate the applicability and diversity
	 Student will be able to articulate reasons of diversity of software processes and software process models
	 Student will be able to discuss strategies to cope with software change
	 Student will be able to differentiate and relate principles of agile methods and the practices of XP
	 Student will be able to determine the similarities and differences between plan-driven and agile approaches to software development
	 Student will be able to distinguish between various types of requirements: user and system requirements, and between functional, non-functional, and domain requirements
	 Student will be able to explain and apply various system modeling approaches
	 Student will be able to describe class, object, sequence, component, use case, and package diagrams using UML
Professional Skills	 Student will be able to explain and apply test-first development
	 Student will be able to identify user, system, functional, non-functional, and domain requirements
	 Student will be able to drive user, system, functional, non-functional, and domain requirements
	* Student will be able to develop software requirements document
	 will be able to create system design of software

Course Contents

Overview and Principles of software engineering. Process activities. Software requirements: Functional, non-functional, user and system requirements. Software design concepts. Software testing. Software evolution. Software stakeholders. Software process models: generic models and evolutionary. agile development methods such as XP and Scrum. Project management. System models: structural and behavioral. Software architectural: views, patterns and application architectures. Open source development. Test-driven development. User testing. Object oriented analysis using UML.

Teaching and Learning Methods

1 - Lectures

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
Midterm I	6th Week	20
Midterm II	9th Week	20
Attendance & Assignments		10
Final Exam	16th Week	50

Books and References

Essential books Software Engineering, by Ian Sommerville, 10th Edition, 2015