

Planning and Quality Assurance Affairs

Course Specifications

Course name	Realtime Systems		
Course number	ITSE4307		
Faculty			
Department			
Course type	Major Needs		
Course level	4		
Credit hours (theoretical)	3		
Credit hours (practical)	0		
Course Prerequisites			

Course Objectives

- 1 Develop students ability to understand the characteristics of real time embedded systems and the concepts of engineering control systems
- 2 Train students on applying the theories and principles relevant to the design and development of real time embedded systems
- 3 Provide students with the knowledge necessary to assess the relevance of software tools, notations and methods of real time embedded systems

Intended Learning Outcomes

Knowledge and Understanding	 a1- Identify the important characteristics of real-time systems
	 a2 - Outline a range of structured and/or formal specification and design techniques as applied to real time systems
	 a3 - Define the necessary and desirable facilities provided by real time operating systems and languages
Intellectual Skills	 b1 - Determine real-time systems requirements
	 b2 - Design real-time systems
Professional Skills	 c1 - Implement a real-time system
	* c2 - Test real-time systems
General Skill	∗ d1- Work in a team
	∗ d2- Share ideas

Course Contents

- 1 _ Interfacing techniques used in medium and large-scale real time systems
- 2 Polled and Interrupt driven Device Drivers
- 3 Control Theory applied to medium and large-scale real time systems
- 4 _ Real Time Requirements and Specification techniques
- 5 Real Time Design Methods
- 6 Real Time Operating Systems
- 7 Real Time Languages
- 8 Testing Methods
- 9 _ Recent Advances in Real Time Systems Development
- 10 System case studies

Teaching and Learning Methods

- 1 Lectures
- 2 Case Studies

Students Assessment

Assessment Method	<u>TIME</u>	MARKS
Mid-term 1	6th week	20%
Mid-term 2	12th week	20%
Projects	During 16 weeks	10%
Final Exam	16th week	50%

Books and References

Essential books	Real-Time Systems Development, Rob Williams (2006), Elsevier Ltd. Real-time systems introduction
Recommended books	Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages Addison-Wesley, 2001 (3rd ed.)

Knowledge and Skills Matrix

Main Course Contents	Study Week	Knowledge and Understanding	Intellectual Skills	Professional Skills	General Skill
Interfacing techniques used in medium and large-scale real time systems	1	a1			
Polled and Interrupt driven Device Drivers	2	a3			
Control Theory applied to medium and large-scale real time systems	3-4	a2	b1	c2	
Real Time Requirements and Specification techniques	5	a1-a2	b1-b2		
Real Time Design Methods	6	a2	b1-b2	c1	
Real Time Operating Systems	7	a1,a3			
Real Time Languages	8-9	a3		c1	
Testing Methods	10-11			c2	
Recent Advances in Real Time Systems Development	12-13		b1-b2	c1	d1-d2
System case studies	14-15			c1	d1-d2